Материальная точка находится в равновесии если. Условия равновесия материальной точки и твердого тела
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Все силы, действующие на материальную точку, приложены в одной точке. Результирующая сила определяется как геометрическая сумма всех сил, действующих на материальную точку. Если результирующая сила равна нулю, то согласно 2-го закона Ньютона ускорение материальной точки равно нулю, скорость постоянна или равна нулю, материальная точка находится в состоянии равновесия.

Условие равновесия материальной точки : . (6.1)

Гораздо более важным вопросом в статике является вопрос о равновесии протяженного тела, поскольку на практике приходится иметь дело именно с такими телами. Ясно, что для равновесия тела необходимо, чтобы результирующая сила, действующая на тело, равнялась нулю. Но выполнение этого условия недостаточно. Рассмотрим горизонтально расположенный стержень, способный вращаться относительно горизонтальной оси О (рис. 6.2). На стержень действуют: сила тяжести , сила реакции оси, две внешние силы и , равные по величине и противоположные по направлению. Результирующая этих сил равна нулю:

однако наш практический опыт подсказывает нам, что стержень начнет вращаться, т.е. не будет находиться в состоянии равновесия. Обращаем внимание, что моменты сил и относительно оси О равны нулю, моменты сил и не равны нулю и оба положительны, силы стараются повернуть стержень по часовой стрелке относительно оси О .

На рис.6.3 силы и равны по величине и направлены одинаково. Результирующая всех сил, действующих на стержень, равна нулю (в этом случае сила больше, чем в первом случае, она уравновешивает результирующую трех сил - , и ). Результирующий момент всех сил равен нулю, стержень находится в равновесии. Приходим к выводу, что для равновесия тела необходимо выполнение двух условий.

Условия равновесия протяженного тела :

Запишем важные правила, которыми можно пользоваться при рассмотрении условий равновесия тела.

1. Векторы приложенных к телу сил можно перемещать вдоль линии их действия. Результирующая сила и результирующий момент при этом не меняются.

2. Второе условие равновесия выполняется относительно любой оси вращения. Удобно выбирать такую ось вращения, относительно которой уравнение (6.3) будет наиболее простым. Например, относительно оси О на рис. 6.2 моменты сил и равны нулю.

Устойчивое равновесие . В устойчивом равновесии потенциальная энергия тела минимальна. При смещении тела из положения устойчивого равновесия потенциальная энергия возрастает, возникает результирующая сила, направленная к положению равновесия.

Неустойчивое равновесие . При смещении тела из положения неустойчивого равновесия потенциальная энергия уменьшается, возникает результирующая сила, направленная от положения равновесия.


Центр тяжести тела - точка приложения результирующей всех сил тяжести, действующих на отдельные элементы тела.

Признак равновесия . Тело сохраняет равновесие, если вертикальная прямая, проходящая через центр тяжести, пересекает площадь опоры тела.

Статика — это раздел механики, изучающий равновесие тел. Статика позволяет определить условия равновесия тел и отвечает на некоторые вопросы, которые касаются движения тел, например, дает ответ, в каком направлении возникает движение, если равновесие нарушено. Стоит оглянуться вокруг и можно заметить, что большинство тел находятся в равновесии – они либо движутся с постоянной скоростью, либо покоятся. Этот вывод можно сделать из законов Ньютона.

Примером может служить сам человек, картина, висящая на стене, подъёмные краны, различные постройки: мосты, арки, башни, здания. Тела вокруг нас подвергаются воздействию каких-либо сил. На тела действует разное количество сил, но если будем находить результирующую силу, для тела, находящегося в равновесии, она будет равна нулю.
Различают:

  • статическое равновесие – тело покоится;
  • динамическое равновесие – тело движется с постоянной скоростью.

Статическое равновесие. Если на тело действуют силы F1, F2, F3, и так далее, то основным требованием существования состояния равновесия является (равновесие). Это векторное уравнение в трехмерном пространстве, и представляет три отдельных уравнения, по одному для каждого направлению пространства. .

Приложенные к телу проекции всех сил на любое направление, должны компенсироваться, то есть алгебраическая сумма проекций всех сил на любое направление должна быть равна 0.

При нахождении равнодействующей силы можно перенести все силы и расположить точку их приложения в центр масс. Центр масс – точка, которая вводится для характеристики движения тела или системы частиц, как целого, характеризует распределение масс в теле.

На практике мы очень часто встречаем случаи и поступательного, и вращательного движения одновременно: скатывание бочки по наклонной плоскости, танцующая пара. При таком движении одного условия равновесия недостаточно.

Необходимое условие равновесия в этом случае будет:

На практике и в жизни большую роль играет устойчивость тел , характеризующая равновесие.

Различают виды равновесия:

  • Устойчивое равновесие;
  • Неустойчивое равновесие;
  • Безразличное равновесие.

Устойчивое равновесие – это равновесие, когда при малом отклонении от положения равновесия возникает сила, возвращающая его в состояние равновесия (маятник остановившихся часов, теннисный шарик, закатившийся в ямку, Ванька-встанька или неваляшка, белье на веревке находятся в состоянии устойчивого равновесия).

Неустойчивое равновесие – это состояние, когда тело после выведения из положения равновесия отклоняется из-за возникающей силы еще больше от положения равновесия (теннисный шарик на выпуклой поверхности).

Безразличное равновесие – будучи предоставленным, самому себе тело не меняет своего положения после выведения из состояния равновесия (теннисный шарик, лежащий на столе, картина на стене, ножницы, линейка, подвешенные на гвоздик находятся в состоянии безразличного равновесия). Ось вращения и центр тяжести совпадают.

Для двух тел, то тело будет более устойчиво, которое обладает большей площадью опоры.

Тело находится в состоянии покоя (или движется равномерно и прямолинейно), если векторная сумма всех сил, действующих на него, равна нулю. Говорят, что силы уравновешивают друг друга. Когда мы имеем дело с телом определенной геометрической формы, при вычислении равнодействующей силы можно все силы прикладывать к центру масс тела.

Условие равновесия тел

Чтобы тело, которое не вращается, находилось в равновесии, необходимо, чтобы равнодействующая всех сил, действующий на него, была равна нулю.

F → = F 1 → + F 2 → + . . + F n → = 0 .

На рисунке выше изображено равновесие твердого тела. Брусок находится в состоянии равновесия под действием трех действующих не него сил. Линии действия сил F 1 → и F 2 → пересекаются в точке O . Точка приложения силы тяжести - центр масс тела C . Данные точки лежат на одной прямой, и при вычислении равнодействующей силы F 1 → , F 2 → и m g → приводятся к точке C .

Условия равенства нулю равнодействующей всех сил недостаточно, если тело может вращаться вокруг некоторой оси.

Плечом силы d называется длина перпендикуляра, проведенного от линии действия силы к точке ее приложения. Момент силы M - произведение плеча силы на ее модуль.

Момент силы стремится повернуть тело вокруг оси. Те моменты, которые поворачивают тело против часовой стрелки, считаются положительными. Единица измерения момента силы в международной системе CИ - 1 Н ь ю т о н м е т р.

Определение. Правило моментов

Если алгебраическая сумма всех моментов, приложенных к телу относительно неподвижной оси вращения, равна нулю, то тело находится в состоянии равновесия.

M 1 + M 2 + . . + M n = 0

Важно!

В общем случае для равновесия тел необходимо выполнение двух условий: равенство нулю равнодействующей силы и соблюдение правила моментов.

В механике есть разные виды равновесия. Так, различают устойчивое и неустойчивое, а также безразличное равновесие.

Типичный пример безразличного равновесия - катящееся колесо (или шар), которое, если остановить его в любой точке, окажется в состоянии равновесия.

Устойчивое равновесие - такое равновесие тела, когда при его малых отклонениях возникают силы или моменты сил, которые стремятся вернуть тело в равновесное состояние.

Неустойчивое равновесие - состояние равновесия, при малом отклонении от которого силы и моменты сил стремятся вывести тело из равновесия еще больше.

На рисунке выше положение шара (1) - безразличное равновесие, (2) - неустойчивое равновесие, (3) - устойчивое равновесие.

Тело с неподвижной осью вращения может находится в любом из описанных положений равновесия. Если ось вращения проходит через центр масс, возникает безразличное равновесие. При устойчивом и неустойчивом равновесии центр масс располагается на вертикальной прямой, которая проходит через ось вращения. Когда центр масс находится ниже оси вращения, равновесие является устойчивым. Иначе - наоборот.

Особый случай равновесия - равновесие тела на опоре. При этом упругая сила распределяется по всему основанию тела, а не проходит через одну точку. Тело покоится в равновесии, когда вертикальная линия, проведенная через центр масс, пересекает площадь опоры. Иначе, если линия из центра масс не попадает в контур, образованный линиями, соединяющими точки опоры, тело опрокидывается.

Пример равновесия тела на опоре - знаменитая Пизанская башня. По легенде с нее сбрасывал шары Галилео Галилей, когда проводил свои опыты по изучению свободного падения тел.

Линия, проведенная из центра масс башни пересекает основание приблизительно в 2,3 м от его центра.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter