Основные этапы развития науки. признание господства вероятностно-статистических закономерностей

История развития науки говорит о том, что самые ранние свидетельства науки можно найти в доисторические времена, такие как открытие огня, и развитие письменности. Ранние подобия записей содержат цифры и информацию о Солнечной системе.

Однако история развития науки со временем стала более важной для жизни человека.

Значимые этапы развития науки

Роберт Гроссетесте

1200-е годы:

Роберт Гроссетесте (1175 – 1253) основатель оксфордской философской и естественнонаучной школы, теоретик и практик экспериментального естествознания разработал основу для правильных методов современных научных экспериментов. Его работы включали принцип, согласно которому запрос должен основываться на поддающихся измерению доказательствах, подтвержденных путем тестирования. Ввел понятие о свете как телесной субстанции в первичной форме и энергии.

Леонардо да Винчи

1400-е годы:

Леонардо да Винчи (1452 – 1519) итальянский художник, ученый, писатель, музыкант. Начал свои изучения в поисках знаний о человеческом теле. Его изобретения в виде чертежей парашюта, летательной машины, арбалета, скорострельного оружия, робота, подобия танка. Художник, ученый и математик также собрал информацию об оптике в виде прожектора и вопросах гидродинамики.

1500-е годы:

Николаус Коперник (1473 -1543) продвинулся в понимании солнечной системы с открытием гелиоцентризма. Он предложил реальную модель, в которой Земля и другие планеты вращаются вокруг Солнца, которое является центром Солнечной системы. Основные идеи ученого были изложены в труде «О вращениях небесных сфер» который беспрепятственно распространялся по Европе и всему миру.

Йоханнес Кеплер

1600-е годы:

Йоханнес Кеплер (1571 -1630) немецкий математик и астроном. Основал на наблюдениях законы планетарного движения. Заложил основы эмпирического исследования движения планет и математических законов этого движения.

Галилео Галилей усовершенствовал новое изобретение, телескоп, и использовал его для изучения солнца и планет. В 1600-х годах также были достигнуты успехи в изучении физики, поскольку Исаак Ньютон разработал свои законы движения.

1700-е годы:

Бенджамин Франклин (1706 -1790) открыл, что молния — это электрический ток. Он также внес вклад в изучение океанографии и метеорологии. Понимание химии также развивалось в течение этого столетия, так как Антуан Лавуазье, названный отцом современной химии, разработал закон сохранения массы.

1800-е годы:

Вехи включали открытия Алессандро Вольты относительно электрохимических серий, которые привели к изобретению батареи.

Джон Дальтон также внес атомную теорию, которая гласит, что вся материя состоит из атомов, которые образуют молекулы.

Основу современного исследования выдвинул Грегор Мендель и раскрыл свои законы наследования.

В конце века Вильгельм Конрад Рентген обнаружил рентгеновские снимки, а закон Джорджа Ома послужил основой для понимания того как использовать электрические заряды.

1900-е годы:

Открытия Альберта Эйнштейна, наиболее известного своей теорией относительности доминировали в начале 20 века. Теория относительности Эйнштейна на самом деле две отдельные теории. Его особая теория относительности, которую он изложил в статье 1905 года «Электродинамика движущихся тел», пришла к выводу, что время должно изменяться в зависимости от скорости движущегося объекта относительно рамки отсчета наблюдателя. Его вторая теория общей относительности, которую он опубликовал как «Основу общей теории относительности», выдвинула идею, что материя вызывает искривление пространства вокруг себя.

История развития науки в области медицины навсегда изменилась Александром Флемингом с из плесневых грибов как исторически первого антибиотика.

Медицина, как наука, обязана также вакцине против полиомиелита в 1952 году которую открыл американский вирусолог Джонас Солк.

В следующем году Джеймс Д. Уотсон и Фрэнсис Крик открыли , которая представляет собой двойную спираль образованную с парой оснований, прикрепленных к сахарофосфатному остову.

2000-е годы:

В 21 веке был завершен первый проект , что привело к более глубокому пониманию ДНК. Это продвинуло изучение генетики, ее роли в биологии человека и ее использования в качестве предиктора заболеваний и других расстройств.

Таким образом, история развития науки всегда была направлена на рациональное объяснение, предсказание и контроле эмпирических явлений великими мыслителями, учеными и изобретателями.

  • 1. Древний мир . Условия для развития научной мысли раньше всего сложились в Древней Греции - первые теоретические системы возникли уже в 6 в. до н. э. Такие мыслители, Фалес и Демокрит, объяснили действительность через естественные начала в противовес мифологии. Аристотель (древнегреческий учёный) первым описал закономерности природы, общества и мышления, выдвигая на первый план объективность знания, логичность, убедительность. В момент познания была введена система абстрактных понятий, закладывались основы доказательного способа изложения материала; начали обособляться отдельные отрасли знания: геометрия (Евклид ), механика (Архимед ), астрономия (Птолемей ).
  • 2. Средние века. Ряд областей знания был обогащён в эпоху Средневековья учёными Арабского Востока и Средней Азии.

Ибн Сина, или Авиценна , (980-1037) создал огромный труд по медицине, посвященный диагностике и лечению недугов лекарствами - "Канон". Другая его работа "Исцеление" охватывает широкий круг тем от философии до математики и физики.

Ибн Рушд (1126-1198) - арабский философ и врач, представитель восточного аристотелизма. Им написан трактат "Опровержение опровержения"; энциклопедический медицинский труд. Автор учения о двойственной истине разграничивал религию на "рациональную", доступную образованным, и "образно-аллегорическую", доступную всем.

Абу Рейхан аль-Бируни (973-1050) занимался астрономией, создал множество приборов для наблюдения Солнца, Луны и звёзд, географией, математикой, оптикой, медициной, лекарствами, драгоценными камнями и астрологией. Создал огромный труд по минералогии - "Книга неисчерпаемых знаний о драгоценных камнях".

Аль-Рази (ок. 845-935) - величайший алхимик, одна из самых крупных фигур в медицине 9-10 вв., автор знаменитого труда "Подробное описание", освещающего практическую медицину того времени, учитывая опыт врачей Греции, Индии и Китая.

В Китае ок. 1000 г. был применён порох для фейерверков и передачи сигналов. Ок. 1045 г. Ли Чень изобрёл разборный шрифт. Также в Китае было создано рулевое управление, изобретен сейсмограф, руль, компас, бумага и многое другое.

Из-за господства религии в Западной Европе родилась особая философская наука - схоластика , а также получили развитие алхимия и астрология. Алхимия способствовала созданию базы для науки в современном смысле слова, поскольку опиралась на опытное изучение природных веществ и соединений и подготовила почву для становления химии. Астрология была связана с наблюдением за небесными светилами и способствовала развитию опытной базы для будущей астрономии.

Среди важнейших изобретений, которые были осуществлены в Европе Средних веков, следует отметить изобретение монахом в 999 г. первых механических часов. В 1280 г. в Италии была изготовлена первая пара очков; предполагают, что это сделал физик Сальвино дельи Армати (1245-1317).

Особенно велика роль изобретения Иоганном Гуттенбергом (между 1397 и 1400-1468) печатного пресса. Гениальное изобретение Гуттенберга состояло в том, что он стал изготавливать выпуклые металлические подвижные буквы, вырезанные в обратном виде, набирать из них строки и с помощью пресса оттискивать их на бумаге. В 1450 г. в Майнце Гуттенберг напечатал 42-строчную Библию - первое полнообъёмное печатное издание в Европе, признанное шедевром ранней печати (1282 страницы).

Многочисленные открытия, проекты, экспериментальные исследования принадлежат Леонардо да Винчи (1452-1519). Он был учёным, инженером, архитектором, художником; работал в области математики, естественных наук, механики, изучал свойства света и движение воды, отстаивал решающее значение опыта в познании природы. Его анатомические атласы превосходили по точности все сделанные до него. Он изобрёл летающую машину с крыльями типа птичьих, подводные суда, огромный лук, маховое колесо, вертолёт, танк и мощные пушки. Им оставлено около 7 тыс. листов рукописей и записных книжек. Однако его труды остались "вещью в себе", так как были неизвестны современникам и затерялись на несколько веков.

3.Первая научная революция.

Важнейшим этапом развития науки стало Новое время - 16-17 вв. Определяющую роль сыграли потребности нарождавшегося капитализма. В этот период было подорвано господство религиозного мышления, и в качестве ведущего метода исследования утвердился эксперимент (опыт), который наряду с наблюдением радикально расширил сферу познаваемой реальности. В это время теоретические рассуждения стали соединяться с практическим освоением природы, что резко усилило познавательные возможности науки. Это глубокое преобразование науки, произошедшее в 16-17 вв., считают первой научной революцией . Она дала миру такие имена, как Н. Коперник, Г. Галилей, Дж. Бруно, И. Кеплер, У. Гарвей, Р. Декарт, Х. Гюйгенс, И. Ньютон и др. Научная революция 17 в. связана с революцией в естествознании. Развитие производительных сил требовало создания новых машин, внедрения химических процессов, законов механики, точных приборов для астрономических наблюдений.

Научная революция прошла несколько этапов, и её становление заняло полтора столетия. Её начало положено Николаем Коперником (1473-1543) и его последователями: Бруно, Галилеем, Кеплером. В 1543 г. польский учёный Коперник опубликовал книгу "Об образованиях небесных сфер" , в которой утвердил представление о том, что Земля так же, как и другие планеты Солнечной системы, обращается вокруг Солнца, которое является центральным телом Солнечной системы. Коперник установил, что Земля не является исключительным небесным телом. Этим был нанесён удар по антропоцентризму, учению, видящему в человеке центральную и высшую цель мироздания, и религиозным легендам, в соответствии с которыми Земля занимает центральное положение во Вселенной. Была отвергнута принятая в течение многих веков геоцентрическая система Птолемея. Но сочинение Коперника с 1616 по 1828 г. было запрещено католической церковью.

Учение Коперника развил итальянский мыслитель Джордано Бруно (1548-1600), автор новаторских для своего времени сочинений "О бесконечности, Вселенной и мирах", "О причине, начале и едином". Он считал, что Вселенная бесконечна и безмерна, что она представляет бесчисленное множество звёзд, каждая из которых подобна Солнцу и вокруг которых вращаются свои планеты. Мнение Бруно теперь полностью подтверждено наукой. А тогда за эти смелые взгляды Бруно был обвинён в ереси и сожжён инквизицией.

Галилео Галилею (1564-1642) принадлежат крупнейшие достижения в области физики и разработки самой фундаментальной проблемы - движения. Огромны его достижения в астрономии: обоснование и утверждение гелиоцентрической системы, открытие четырёх самых крупных спутников Юпитера из 13 известных в настоящее время; открытие фаз Венеры, необычайного вида планеты Сатурн, создаваемого, как известно теперь, кольцами, представляющими совокупность твёрдых тел; огромного количества звёзд невидимых невооружённым взглядом. Все научные достижения Галилея в значительной мере объясняются тем, что в качестве исходного пункта познания природы учёный признавал наблюдения, опыт. Галилей был первым, кто наблюдал небо в телескоп (телескоп с 32-кратным увеличением был построен самим учёным). Основные труды Галилея - "Звёздный вестник", "Диалоги о двух системах мира" .

Одним из творцов астрономии Нового времени был Иоганн Кеплер (1571-1630), который открыл законы движения планет (законы Кеплера). Он составил так называемые Рудольфовы планетные таблицы, разработал основы теории затмений, изобрёл телескоп с двояковыпуклыми линзами. Свои теории он отобразил в трудах "Новая астрономия" и "Краткий обзор астрономии Коперника " .

Основателем современной физиологии и эмбриологии считается английский врач Уильям Гарвей (1578-1657). "Анатомическое исследование о движении сердца и крови у животных" , в котором описан большой и малый круг кровообращения - его главное сочинение. Его учение опровергало бытующие до этого представления, изложенные древнеримским врачом Галеном (ок. 130-ок. 200). Гарвей впервые высказал мнение о том, что "всё живое происходит из яйца". Однако оставался открытым вопрос, как кровь, поступающая из сердца по венам, возвращается в него по артериям. Его предположения о существовании крохотных соединяющих сосудов было доказано в 1661 г. М. Мальпиджи , итальянским исследователем, обнаружившим капилляры, соединяющие вены и артерии, под микроскопом.

Среди заслуг французского учёного (математика, физика, философа, филолога) Рене Декарта (1596-1650) - введение оси координат, которое способствовало объединению алгебры и геометрии. Он ввёл понятие переменной величины, что легло в основу дифференциального и интегрального исчислений Ньютона и Лейбница. Философские позиции Декарта дуалистичны, он признавал душу и тело, из которых душа - "мыслящая" субстанция, а тело - "протяжённая" субстанция. Он считал, что бог существует, что бог сотворил материю, движение и покой. Главные сочинения Декарта - "Геометрия", "Рассуждение о методе", "Начала философии" .

Христиан Гюйгенс (1629-1695), нидерландский учёный, изобрёл маятниковые часы, установил законы маятникового движения, заложил основы теории удара, волновой теории света, объяснил двойное лучепреломление. Им открыты кольца у Сатурна и его спутник Титан. Гюйгенс подготовил один из первых трудов по теории вероятности.

Англичанин Исаак Ньютон (1643-1727) - один из величайших учёных в истории человечества. Он написал огромное количество научных трудов по самым разным областям науки ("Математические начала натуральной философии", "Оптика" и др.). С его именем связаны важнейшие этапы в развитии оптики, астрономии, математики. Ньютон создал основы механики, открыл закон всемирного тяготения и разработал на его основе теорию движения небесных тел. Это научное открытие прославило Ньютона навечно. Также ему принадлежат такие открытия в области механики, как понятия силы, энергии, формулировка трёх законов механики; в области оптики - открытие рефракции, дисперсии, интерференции, дифракции света; в области математики - алгебра, геометрия, интерполяция, дифференциальное и интегральное исчисления.

В 18 в. революционные открытия были совершены в астрономии И. Кантом и П. Лапласом, а также в химии - её начало связано с именем А.Л. Лавуазье. Иммануилом Кантом (1724-1804), немецким философом, родоначальником немецкой классической философии, разработана космогоническая гипотеза происхождения Солнечной системы из первоначальной туманности (трактат "Всеобщая естественная история и теории неба" ). Пьер Лаплас (1749-1827) - французский астроном, математик, физик, автор классического труда по теории вероятности и небесной механике (рассматривал динамику Солнечной системы в целом и её устойчивость), автор трудов "Трактат о небесной механике" и "Аналитическая теория вероятности" . Так же как и Кант, он предложил космогоническую гипотезу, получившую название по его имени (гипотеза Лапласа). Французский химик Антуан Лоран Лавуазье (1743-1794) считается одним из основоположников современной химии. В исследованиях он применял количественные методы. Выяснил роль кислорода в процессах горения, обжигания металлов и дыхания. Один из основателей термохимии. Автор классического курса "Начальный учебник химии" , а также сочинения "Методы наименования химических элементов" . Его жизнь оборвалась во время французской революции - он был гильотирован по решению Конвента.

  • 4. Промышленный переворот.
  • 18 век вошёл в историю человечества как век начала промышленной революции . Родиной промышленной революции стала Англия, где уже в 30- 40-е годы этого столетия начался переход от мануфактур с ручным трудом к фабрикам и заводам с применением машин. Внедрение машин в производство охватил такие ведущие отрасли английской промышленности, как хлопчатобумажная, энергетика, металлургия, транспорт. Завершился он в первой части 19 в. В числе важнейших изобретений эпохи промышленного переворота: "летающий челнок" Дж. Кейя, прялка "Дженни" Дж. Харгривса , ватерная машина Т. Хайса , мюль-машина С. Кромптона , метод отбеливания тканей К. Бертолле , метод окрашивания тканей с рисунком Т . Белла , метод пудлингования Г. Корта , паровоз Дж. Стефенсона и многие другие.

В 19 в. промышленный переворот охватил все ведущие страны мира (США, Францию, Германию, Японию и др.). В числе изобретателей этих стран (кроме Японии) были: Э. Уитни (хлопкоочистительная машина), Р. Фултон (пароход), Ж. Жаккард (станок узорчатых тканей), Ф. Жирар (льнопрядильная машина), Н. Леблан (способ производства соды из морской воды), Мак-Кормик (жатвенная машина), Э.В. Сименс (динамо-машина), Ф. Кениг (паровой пресс для книгопечатания).

И это далеко не всё, что человечеству дала промышленная революция. Замена ручного труда машинным привела к формированию индустриальной цивилизации, которая опиралась на успешное развитие прикладных, точных и естественных наук и стимулировала новые крупные сдвиги в научных знаниях.

В 19 в. в науке происходили революционные непрерывные перевороты во всех отраслях естествознания.

К началу 19 в. накопленный наукой опыт, материал в отдельных областях уже не укладывался в рамках механистического объяснения природы и общества. Потребовались новый виток научных знаний и более глубокий и широкий синтез, объединяющий результаты отдельных наук. В этот исторический период науку прославили Ю.Р. Майер (1814-1878), Дж. Джоуль (1818-1889), Г. Гельмгольц (1821-1894), которые открыли законы сохранения и превращения энергии, что обеспечило единую основу для всех разделов физики и химии.

Огромное значение в познании мира имело создание Т. Шванном (1810-1882) и М. Шлейданом (1804-1881) клеточной теории, показавшей единообразную структуру всех живых организмов. Ч. Дарвин (1809-1882), создавший эволюционное учение в биологии, внедрил идею развития в естествознание. Благодаря периодической системе элементов, открытой гениальным русским учёным Д.И. Менделеевым (1834-1907), была доказана внутренняя связь между всеми известными видами веществ. Расцвет классического естествознания способствовал созданию единой системы наук.

5. Вторая научно-техническая революция.

К рубежу 19-20 вв. произошли крупные изменения в основах научного мышления, механистическое мировоззрение исчерпало себя, что привело классическую науку Нового времени к кризису. Этому способствовало также открытие электрона и радиоактивности. В результате разрешения кризиса произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки. Она связана прежде всего с именами Макса Планка (1858-1947) и Альберта Эйнштейна (1879-1955). Открытие электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали прорыв в области микромира и больших скоростей. Успехи физики оказали влияние на химию. Квантовая теория, объяснив природу химических связей, открыла перед наукой и производством широкие возможности химического преобразования вещества; началось проникновение в механизм наследственности, получила развитие генетика, сформировалась хромосомная теория.

Достижения научной мысли конца 19 - начала 20 в. послужили основой технической революции, происшедшей в этот период, она получила название второй научно-технической революции (НТР).

Выдающиеся изобретатели второй НТР: Э.В. Сименс (динамо-машина); Т. Эдисон (современный генератор); Ч. Парсонс (паровая турбина); Г. Даймлер и К. Бенц (двигатель внутреннего сгорания); Р. Дизель (ДВС с большим КПД); А.Н. Лодыгин (лампа накаливания); П.Н. Яблочков ("электрическая свеча"); Т. Эдисон и Д. Юз (микрофон); А.Б. Строунджер (автоматическая телефонная станция); А.С. Попов (радио); Г. Маркони (передача электрических импульсов без провода); Дж. А. Флеминг (диод); Г. Бессемер, П. Мартен, С. Томас (новые способы выплавки стали); Г. Даймлер и К. Бенц (автомобили); Дж. Дэнлоп (резиновые шины); Д.И. Менделеев , К.Э. Циолковский , Н.Е. Жуковский (вопросы воздухоплавания); А.Ф. Можайский, К. Адер (самолётостроение с паровым двигателем); Дж. Хайетт (целлулоид); и многие другие.

Сердцевиной второй НТР стала энергетика - изобретение электричества и двигателя внутреннего сгорания, что предопределило переход от пара и каменного угля к электричеству и жидкому топливу. Переворот в энергетике, изобретение способа передачи электричества на дальние расстояния обусловили рождение новых видов транспорта - автомобиля, самолёта, электровоза, тепловоза, трамвая.

Автомобиль и самолёт не только революционизировали транспорт, но и дали толчок преобразованию всех смежных отраслей - машиностроения, металлургии, химии. Были изобретены новые способы выплавки стали, получило развитие производство разнообразных видов качественных сталей, двинулось вперёд производство цветных металлов.

Вторая НТР знаменовала быстрое развитие новых средств связи - телефона, телеграфа, радио, что сыграло огромную роль в распространении информации во всём мире.

Массовое производство катализаторов, лекарств, красителей, минеральных удобрений было итогом прогресса в химической промышленности.

Свершился технологический переворот в сельском хозяйстве, где нашли широкое применение химические удобрения, тракторы и др. с/х машины. В результате значительно выросла урожайность сельскохозяйственных культур, продуктивность скота, производительность труда, благодаря чему этот сектор экономики высвободил значительную массу рабочих рук, необходимых для индустрии. Ведущие страны мира перешли к индустриальному типу занятости.

Достижения науки и техники стали основой военно-технической революции. В конце 19 - начале 20 в. появились военная авиация и танки, были созданы мощные военно-морские суда, автоматическое артиллерийское оружие, изобретены новые взрывчатые вещества, отравляющие газы, широко стала использоваться радиосвязь. Известно, что в этот период ведущие страны мира усилили гонку вооружения, подготовив материально-техническую базу для Первой, а затем и Второй мировых войн.

6. Третья научно-техническая революция.

На стадии завершения Второй мировой войны началась третья научно-техническая (научно-технологическая ) революция. Она связана с кардинальными изменениями в области производительных сил в связи с развитием атомной энергетики, космонавтики, вычислительной техники, биотехнологии, производства новых конструкционных материалов.

Следует отметить, что пока нет общепринятой периодизации этой НТР. Выделяют в развитии третьей НТР два этапа: 1. с середины 40-х годов до середины 60-х; 2. с середины 60-х до настоящего времени. Границей между этими этапами принято считать создание и внедрение в систему хозяйства ведущих стран ЭВМ четвёртого поколения.

Изобретения первого этапа включали телевидение, компьютеры, транзисторы, радар, ракеты, атомную бомбу, водородную бомбу, синтетические волокна, искусственные спутники Земли, реактивную авиацию, электроэнергетические установки на базе ядерного реактора, станки с числовым программным управлением (ЧПУ), лазеры, интегральные схемы, спутники связи, скоростные экспрессы. Охарактеризуем некоторые из изобретений.

В 1942 г. итальянский учёный Э. Ферми (1901-1967) построил ядерный реактор, в котором осуществлялась управляемая ядерная реакция. Первая атомная бомба создана под руководством американского физика Р. Оппенгеймера (1904-1967). Первая атомная бомба в 1945 г. была сброшена на японские города Хиросима и Нагасаки.

Систему для обнаружения тел с помощью радиоволн - радар создал шотландский физик Р.У. Уатт (1892-1973). Построенная им в 1935 г. радарная установка была способна обнаружить самолёт на расстоянии 64 км. Эта система сыграла большую роль в защите Англии от налётов немецкой авиации в годы Второй мировой войны.

Первый пуск ракеты большой дальности "Фау-2", созданной В. фон Брауном (1912-1977), был проведён в 1942 г. Скорость "Фау-2" в несколько раз превышала скорость звука. Дальность полёта составляла 320 км, а сейчас некоторые ракеты достигают дальности полёта 9600 км.

Лазер - оптический квантовый генератор. В переводе "лазер" означает "усиление света в результате вынужденного излучения". Сначала лазеры применяли в промышленности для сверления, сварки и гравировки. В настоящее время их используют даже в хирургических операциях. Теория лазера разработана в 1958 г. американскими физиками Ч. Таунсом и А. Шелау . Первый лазер был создан в 1960 г. Т. Мейменом .

На основе разработанной в 1918 г. французскими учёными во главе с П. Ланжевеном (1872-1946) сонар-системы звуковой локации (посылает звуковые волны, и любой объект, встретившийся на пути, отражает их) в 50-е годы 20 в. шотландский врач Ян Дональд создал метод для исследования внутренних органов человека и даже зародыша ребёнка в утробе матери. Этот процесс назвали ультразвуковой диагностикой (УЗИ).

Один из первых компьютеров - ENIAC (электронный числовой интегратор и калькулятор) разработали Дж. Мочли (1907-1980) и Дж. Еккарт для армии США. По сравнению с современным ЭВМ он был очень громоздким - занимал целый зал и выполнял гораздо меньше операций. Технологии ЭВМ постепенно совершенствовались. Габариты компьютеров уменьшались, а их возможности увеличивались. В 1964 г. американская компания IBM выпустила первый текстовый компьютер. В 1978 г. американская компания "Квикс" создала компьютер, использующий для записи текста магнитные диски. В 80-е годы персональные компьютеры со специальными программами начали вытеснять пишущие машины.

На втором этапе НТР были изобретены микропроцессоры, волоконно-оптическая передача информации, промышленные роботы, биотехнология, сверхбольшие и объёмные интегральные схемы, сверхпрочная керамика, компьютеры пятого поколения, генная инженерия, термоядерный синтез. Ядром этого этапа НТР стали синтез трёх базовых научно-технических направлений: микроэлектроники, биотехнологии, информатики. Именно они отражают фундаментальные достижения квантовой физики, молекулярной биологии, кибернетики и теории информации.

В конце 20 в. завершается век железа, которое было основным конструкционным материалом почти три тысячелетия. Благодаря достижениям НТР 20 в. человечество уже может отдать приоритет материалам, обладающим заданным свойствам, - композитам, керамике, пластмассам и синтетическим смолам, изделиям из металлических порошков.

В конце 20 в. интенсивно формируется постиндустриальная цивилизация . Подлинный переворот осуществляется в технике связи и транспорта. Нашли широкое применение волоконно-оптическая связь, космическая связь, факсимильная, сотовая.

Одним из величайших открытий 20 в. учёные признают создание модели ДНК . Биология, особенно молекулярная, к середине 20 в. выдвинулась на одно из первых мест в естествознании. Американские учёные Ф. Крик и Д. Уотсон , используя материалы Р. Франклин и М. Уилкинса , исследовали ДНК с помощью Х-лучей и в 1953 г. создали модель молекулы ДНК. Её форма - двойная переплетающаяся спираль. Модель показала, как происходит деление молекул ДНК и образование новых её копий. В 1962 г. Крику, Уотсону и Уилкинсу была присуждена Нобелевская премия в области медицины.

В современном мире наука приобретает всё большее значение и развивается всё более быстрыми темпами. Особенно усиливается роль фундаментальной, теоретической науки, и этот процесс характерен для всех областей знания.

7. Современный этап.

Достижения современного этапа в области медицины и генетики включают целый ряд новых открытий. Есть сообщения о том, что учёным в лабораторных условиях удалось не только вырастить человеческий мочевой пузырь, но и успешно трансплантировать его в организм человека.

Обнаружены аденовирусы, способные вызывать ожирение, что свидетельствует о возможности заражения таким недугом. Выявлен один из генов, связанный с регуляцией агрессии и беспокойства.

Учёные Калифорнийского университета, г. Ирвин, установили, что для достижения одних и тех же Q-коэффициентов мужчины и женщины используют разные области мозга - в основе интеллекта мужчин лежит серое вещество мозга, а интеллекта женщин - белое.

Из культуры клеток американские учёные вырастили сеть кровеносных сосудов. Человеческие клетки венозного эпителия они высадили на трёхмерную культуру мышиных мезенхимных клеток и имплантировали такую конструкцию в мышей. Для современной медицины полученные результаты имеют неоценимое значение.

В разработке различных диагностических тестов помогут исследования образцов слюны, так как установлено, что в человеческой слюне содержится большое количество белков. А процесс забора слюны гораздо проще, дешевле и безопаснее, чем забор традиционно используемой для большинства лабораторных анализов крови

В области генетики впервые проведено генетическое картирование собаки. Оно показало, что геномы человека и его четвероногого друга совпадают на 75 %.

Летом 2003 г. итальянским эмбриологам удалось получить первый клон лошади.

В 2003 г. исполнилось 50 лет со дня открытия структуры ДНК. Учёные объявили о полной расшифровке 98 % нуклеотидной последовательности человеческих хромосом.

Вот уже пять лет известен ген, замедляющий старение. Учёные установили, что удаление гена 81К2 из организма приводит к фантастическому увеличению жизни - в целых шесть раз. Эти результаты пока подтверждены на дрожжах и человеческих клетках печени. Удаление данного гена кроме продления жизни способно превратить подопытного в "сверхчеловека". Клетки-долгожители, лишённые гена 81К2, проявляли совершенно необычную способность к сопротивлению стрессам. Несмотря на то, что учёные воздействовали на модифицированные клетки оксидантами и горячим воздухом, клетки упорно цеплялись за жизнь, хотя обычные клетки уже давно бы погибли.

Изготовлено устройство размером с авторучку, предназначенное для удаления из крови вредоносных вирусов. По уверениям его создателей, оно может выловить из крови человека вирусы оспы, Эболы, Марбурга и прочие опасные заболевания. Принцип работы: прибор устанавливается на руку и "подключается" к вене человека. Сердце само качает через него кровь (фильтрация вирусов основана на том факте, что размеры клеток плазмы крови и вирусов отличаются во много раз). За 12 минут сердце делает полный цикл перекачки всей крови. За несколько часов ношения устройства вся кровь полностью очищается от вирусов.

В 2004 г. сообщалось, что разработана технология изготовления атомных часов, которые размещаются в объёме нескольких кубических миллиметров.

За последние десятилетия достижениями физики стала новая теория, связывающая массу нейтрино с ускоряющимся расширением Вселенной.

Брукхейвенская национальная лаборатория США близ Нью-Йорка не так давно запустила новый ускоритель - релятивистский коллайдер тяжёлых ионов. Он позволяет ускорять и сталкивать не только протоны, как на обычных ускорителях, но и ядра атомов многих элементов Периодической системы Менделеева, вплоть до золота. В экспериментах была воссоздана субстанция, которая ранее существовала только один раз в истории Вселенной - в момент её возникновения. При столкновении атомов золота на сверхвысоких скоростях структура ядра исчезает, а все ранее "запакованные" в нуклоны кварки и глюоны смешиваются и образуют новую сверхплотную фазу ядерной материи - кварк-глюонную плазму. Температура в точке столкновения достигает 4 млрд. градусов, это самая высокая температура в существующей вселенной. Многие учёные высказали свои наблюдения. Например, за время жизни этой плазмы (10-23 с) учёные смогли увидеть, как из плазмы опять формируется элементарные частицы, а также изучить свойства нового вида материи. Оказалось, что плазма, скорее всего, похожа по своим свойствам на жидкость, чем на газ. Проект реализовала интернациональная команда учёных: 45 институтов из 11 стран, в том числе и из России.

Однако ряд учёных подняли вопрос о безопасности подобного рода экспериментов. По их мнению, имитируя условия, при которых возникла Вселенная, можно доиграться до повторения условий "большого взрыва", при котором реактор станет центром возникновения новой вселенной. Если это случится, то, понятное дело, исчезнет не только реактор, Земля, Солнечная система и наша галактика, но и, скорее всего, вся существующая Вселенная. При всей фантастичности этой угрозы предположение не лишено смысла: по признанной сейчас космологической теории вся существующая Вселенная возникла из одной-единственной частицы, которая находилась в некотором специфическом сингулярном состоянии (бесконечно большая плотность и температура).

Как это ни печально, социальная ответственность учёных всегда была ниже конъюнктурных требований времени. Вопрос ответственности учёных вновь на повестке дня.

наука производство мысль ученый

Наука, подобно религии и искусству, зарождается в недрах мифологического сознания и в дальнейшем процессе развития культуры отделяется от него. Примитивные культуры обходятся без науки, и только в достаточно развитой культуре она становится самостоятельной сферой культурной деятельности. При этом сама наука в ходе своей исторической эволюции претерпевает существенные изменения, изменяются и представления о ней (образ науки). Многие дисциплины, считавшиеся в прошлом науками, с современной точки зрения уже не относятся к ним (например, алхимия). Вместе с тем современная наука ассимилирует в себе элементы истинного знания, содержавшиеся в различных учениях прошлого.

В истории науки можно выделить четыре основных периода.

1) С I тыс. до н.э. до XVI века . Этот период можно назвать периодом преднауки . На протяжении него наряду с передававшимися от поколения к поколению в течение веков обыденно-практическими знаниями стали возникать первые философские представления о природе (натурфилософия), носившие характер очень общих и абстрактных умозрительных теорий. Зачатки научного знания формировались внутри натурфилософии как ее элементы. С накоплением сведений, приемов и методов, используемых для решения математических, астрономических, медицинских и других проблем, в философии образуются соответствующие разделы, которые затем постепенно обособляются в отдельные науки: математику, астрономию, медицину и т.д.

Однако возникавшие в рассматриваемый период научные дисциплины продолжали трактоваться как части философского знания. Наука развивалась в основном в рамках философии и в очень слабой связи с жизненной практикой и ремесленным искусством с ним. Это своего рода «эмбриональный» период развития науки, предшествующий ее рождению в качестве особой формы культуры.

2) XVI-XVII века - эпоха научной революции. Она начинается с исследований Коперника и Галилея и увенчивается фундаментальными физико-математическими трудами Ньютона и Лейбница.

В этот период были заложены основы современного естествознания. Отдельные, разрозненные факты, добытые ремесленниками, врачами-практиками, алхимиками, начинают систематически анализироваться и обобщаться. Образуются новые нормы построения научного знания: экспериментальная проверка теорий, математическая формулировка законов природы, критическое отношение к религиозным и натурфилософским догмам, не имеющим опытного обоснования. Наука обретает собственную методологию и все активнее начинает решать вопросы, связанные с практической деятельностью. В результате наука оформляется как особая, самостоятельная область деятельности. Появляются ученые-профессионалы, развивается система университетского образования, в которой происходит их подготовка. Возникает научное сообщество со свойственными ему специфическими формами и правилами деятельности, общения, обмена информацией.

3) XVIII-XIX вв. Науку этого периода называют классической . В этот период образуется множество отдельных научных дисциплин, в которых накапливается и систематизируется огромный фактический материал. Создаются фундаментальные теории в математике, физике, химии, геологии, биологии, психологии и других науках. Возникают и начинают играть все более заметную роль в материальном производстве технические науки. Возрастает социальная роль науки, развитие ее рассматривается мыслителями того времени как важное условие общественного прогресса.

4) С XX века – новая эпоха в развитии науки. Науку ХХ в. называют постклассической, потому что на пороге этого века она пережила революцию, в результате которой стала существенно отличаться от классической науки предшествующего периода. Революционные открытия на рубеже XIX-XX вв. потрясают основы целого ряда наук. В математике подвергаются критическому анализу теория множеств и логические основания математического мышления. В физике создаются теория относительности и квантовая механика. В биологии развивается генетика. Появляются новые фундаментальные теории в медицине, психологии и других науках о человеке. Крупнейшие изменения претерпевает весь облик научного знания, методология науки, содержание и формы научной деятельности, ее нормы и идеалы.

Вторая половина XX в. приводит науку к новым революционным преобразованиям, которые в литературе часто характеризуются как научно-техническая революция. Достижения науки в неслыханных прежде масштабах внедряются в практику; особенно большие сдвиги наука вызывает в энергетике (атомные электростанции), на транспорте (автомобилестроение, авиация), в электронике (телевидение, телефония, компьютеры). Дистанция между научными открытиями и их практическим применением сократилась до минимума. В прошлые времена на то, чтобы найти способы практического использования достижений науки, уходило 50-100 лет. Теперь же это часто делается за 2-3 года или даже еще быстрее. И государство, и частные фирмы идут на большие расходы для поддержки перспективных направлений развития науки. В результате наука бурно разрастается и превращается в одну из важнейших отраслей общественного труда.


Начнем с того, что история науки отличается неравномерностью развития в пространстве и во времени: огромные вспышки активности сменяются длительными периодами затишья, продолжающимися до новой вспышки, часто уже в другом регионе. Но место и время усиления научной активности никогда не были случайными: периоды расцвета науки обычно совпадают с периодами усиления экономической активности и технического прогресса. С течением времени центры научной активности перемещались в другие регионы Земли и, скорее, следовали за перемещениями центров торговой и промышленной деятельности, нежели направляли ее.

Современной науке предшествует преднаука в виде отдельных элементов знаний, возникших в древних обществах (шумерская культура, Египет, Китай, Индия). Древнейшие цивилизации выработали и накопили большие запасы астрономического, математического, биологического, медицинского знания. Но это знание не выходило за рамки преднауки, оно носило рецептурный характер, излагалось главным образом как предписания для практики - для ведения календарей, измерения земли, предсказания разливов рек, приручения и селекции животных. Такое знание, как правило, имело сакральный характер. Слив с религиозными представлениями его хранили и передавали из поколения в поколение жрецы, оно не приобрело статуса объективного знания о естественных процессах.

Около двух с половиной тысячелетий назад центр научной активности с Востока переместился в Грецию, где на основе критики религиозно-мифологических систем был выработан рациональный базис науки. В отличие от разрозненных наблюдений и рецептов Востока греки перешли к построению теорий - логически связанных и согласованных систем знания, предполагающих не просто констатацию и описание фактов, но и их объяснение и осмысление во всей системе понятий данной теории. Становление собственно научных, обособленных и от религии, и от философии форм знания, обычно связывают с именем Аристотеля, заложившего первоначальные основы классификации различных знаний. В качестве самостоятельной формы общественного сознания наука стала функционировать в эпоху эллинизма, когда целостная культура античности начала дифференцироваться на отдельные формы духовной деятельности.

В античной науке господствует идея незыблемости, опирающаяся на чувственное наблюдение и здравый смысл . Вспомним физику Аристотеля, в которой чувственное наблюдение и здравый смысл – и только они – определяют характер методологии объяснения мира и совершающихся в нем событий. Его учение делит мир на две области, по своим физическим свойствам качественно отличные друг от друга: на область Земли («подлунный мир») – область постоянных изменений и превращений - и область эфира («надлунный мир») – область всего вечного и совершенного. Отсюда вытекает положение о невозможности общей количественной физики неба и Земли, а в конечном итоге – положение, возводящее в ранг мировоззренческой доминанты геоцентрические идеи. Именно такой философский подход и вел к тому, что физика «подлунного мира» не нуждается в математике – науке, как ее понимали в античности, об идеальных объектах. Зато в ней нуждается астрономия, которая изучает совершенный «надлунный мир». Представления Аристотеля о движении и силе выражали лишь данные непосредственного наблюдения и опирались не на математику, а на здравый смысл. В физике древних ничего не говорилось об идеализированных объектах, таких как абсолютно твердое тело, материальная точка, идеальный газ, и не говорилось именно потому, что эта физика была чужда контролируемому экспериментированию. Повседневный опыт или непосредственное наблюдение служили краеугольным камнем познания, что не давало возможности ставить вопросы, относящиеся к сущности наблюдаемых явлений, а, следовательно, к установлению законов природы. Аристотель, вероятно, крайне удивился бы тому, как современный ученый изучает природу - в отгороженной от мира научной лаборатории, при искусственно созданных и контролируемых условиях, активно вмешиваясь в естественное протекание природных процессов.

Религиозное средневековье не изменило существенно это положение вещей. Только в позднее средневековье со времени крестовых походов развитие промышленности вызвало к жизни массу новых механических, химических и физических фактов, доставивших не только материал для наблюдений, но также и средства для экспериментирования. Развитие производства и связанный с этим рост техники в эпоху Возрождения и Новое время способствовали развитию и распространению экспериментальных и математических методов исследования. Революционные открытия в естествознании, сделанные в эпоху Возрождения, получили дальнейшее развитие в Новое время, когда наука стремительно начала входить в жизнь как особый социальный институт и необходимое условие функционирования всей системы общественного производства. Это относится прежде всего к естествознанию в современном понимании, переживавшему в это время период своего становления.

Что нового внесла наука Нового времени в представления о мире?

Идея незыблемости философских и научных ценностей, опирающаяся на здравый смысл, была отвергнута философской мыслью и естествознанием Нового времени. Физика становится экспериментальной наукой , чувственное наблюдение соединяется с теоретическим мышлением, на научную сцену выходят методы абстрагирования и связанная с ними математизация знания. Данные экспериментов описываются уже не понятиями здравого смысла, а осмысливаются теорией, в которой соотносятся понятия, далекие по содержанию от чувственной непосредственности. Пространство, время и материя стали интересовать исследователей с количественной стороны, и даже если не отрицалась идея творения природы, то предполагалось, что Творец – математик и сотворил природу по законам математики. Галилей утверждал, что природа должна изучаться с помощью опыта и математики, а не с помощью Библии или чего-то еще. Экспериментальный диалог с природой подразумевает активное вмешательство, а не пассивное наблюдение. Исследуемое явление должно быть предварительно препарировано и изолировано с тем, чтобы оно могло служить приближением к некоторой идеальной ситуации, возможно физически недостижимой, но согласующейся с принятой концептуальной схемой. Природа, как бы на судебном заседании, подвергается с помощью экспериментирования перекрестному допросу именем априорных принципов. Ответы природы записываются с величайшей точностью, но их правильность оценивается в терминах той идеализации, которой исследователь руководствуется при постановке эксперимента. Все остальное считается не информацией, а вторичными эффектами, которыми можно пренебречь. Недаром в эпоху становления науки Нового времени в европейской культуре бытовало широко распространенное сравнение эксперимента с пыткой природы, посредством которой исследователь должен выведать у природы ее сокровенные тайны. В представлениях о науке как предприятии, все глубже и глубже проникающем в тайны бытия, сказывается рационалистическая установка, согласно которой деятельность науки представляет собой процесс, направленный на окончательное разоблачение тайн бытия.

Основатели современной науки прозорливо усматривали в диалоге между человеком и природой важный шаг к рациональному постижению природы. Но претендовали они на гораздо большее. Галилей и те, кто пришел после него, разделяли убеждение в том, что наука способна открывать глобальные истины о природе. По их мнению, природа не только написана на математическом языке, поддающемся расшифровке с помощью надлежаще поставленных экспериментов, но и сам язык природы единственен. Отсюда уже недалеко до вывода об однородности мира и, следовательно, доступности постижения глобальных истин с помощью локального экспериментирования. Сложность природы была провозглашена кажущейся, а разнообразие природы – укладывающемся в универсальные истины, воплощенные в математических законах движения. Природа проста и не роскошествует излишними причинами вещей, учил Ньютон. Эта была наука, познавшая успех, уверенная, что ей удалось доказать бессилие природы перед проницательностью человеческого разума.

Эти и другие подобные представления подготовили переворот в науке Нового времени, завершившийся созданием механики Галилея-Ньютона - первой естественнонаучной теории. Теоретическое естествознание, возникшее в эту историческую эпоху, получило название «классическая наука » и завершило долгий процесс становления науки в собственном смысле слова.

Методологию классической науки очень четко выразил французский математик и астроном П.Лаплас. Он считал, что природа сама по себе подчинена жестким, абсолютно однозначным причинным связям, а если мы не всегда наблюдаем эту однозначность, то только в силу ограниченности наших возможностей. «Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если вдобавок, он оказался бы достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями мельчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором». С точки зрения Лапласа, идеальным примером научной теории является небесная механика, в которой на основании законов механики и закона всемирного тяготения удалось дать объяснение «всех небесных явлений в их малейших подробностях». Она не только привела к пониманию огромного количества явлений, но и дала образец «истинной методы исследования законов природы».

Классическая научная картина мира базируется на представлении качественной однородности явлений природы. Все многообразие процессов ограничивается макромеханическим движением, все природные связи и отношения исчерпываются замкнутой системой вечных и неизменных законов классической механики. В отличие от античных и тем более средневековых представлений природа рассматривается с точки зрения естественного порядка, в котором имеют место только механические объекты.

Все крупнейшие физики конца Х1Х и начала ХХ столетий полагали, что все великие и вообще все мыслимые открытия в физике уже совершились, что установленные законы и принципы незыблемы, возможны только их новые приложения и что, следовательно, дальнейшее развитие физической науки будет заключаться только лишь в уточнении второстепенных деталей. Теоретическая физика представлялась многим в основном завершенной наукой, исчерпавшей свой предмет. Знаменательно, что один из крупнейших физиков того времени В.Томсон, выступая с речью по поводу начала нового века, сказал, что физика превратилась в развитую, завершенную систему знаний, а дальнейшее развитие будет состоять лишь в некоторых доделках и повышении уровня физических теорий. Правда, он заметил, что красота и ясность динамических теорий тускнеет из-за двух маленьких «туч» на ясном небосводе: одна – отсутствие эфирного ветра, другая – так называемая «ультрафиолетовая катастрофа». Несмотря на то, что во второй половине Х1Х в. механистические представления о мире были существенно поколеблены новыми революционными идеями в области электромагнетизма (М.Фарадей, Дж.Максвелл), а также каскадом научных открытий, необъяснимых на основе законов классической науки, механистическая картина мира оставалась господствующей до конца Х1Х в.

И вот на фоне этой веками складывавшейся уверенности многих ученых в абсолютной несокрушимости установленных ими и их предшественниками законов, принципов и теорий началась революция, которая сокрушила эти лишь казавшиеся вечными представления. Человеческое познание проникло в необычные слои бытия и столкнулось там с непривычными видами материи и формами ее движения. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние преставления о пространстве и времени, о неделимости атома, о постоянстве массы, о неизменности химических элементов, об однозначной причинности и т.д. Вместе с этим закончился классический этап в развитии естествознания, наступил новый этап неклассического естествознания, характеризующийся квантово-релятивистскими представлениями о физической реальности. Из упомянутых Томсоном двух «туч» на ясном небосводе физической науки и родились те две теории, которые определили суть неклассической физики, - теория относительности и квантовая физика. И они легли в основу современной научной картины мира.

Чем же отличается неклассическая наука от классической?

В классической науке всякое теоретическое построение не только рассматривалось, но и сознательно создавалось как обобщение данных опыта, как подсобное средство описания и истолкования результатов наблюдения и эксперимента, результатов, полученных независимо от теоретического построения. Новые воззрения заменяют прежние лишь потому, что они основываются на большем числе фактов, на уточненном значении ранее грубо измеренных величин, на результатах опыта с прежде неизвестными явлениями или с ранее не выявленными параметрами уже до того изученных процессов. Научное знание, исходящее из того, что вся динамика знания состоит в непрерывном увеличении общей суммы эмпирических обобщений, не знает и не может знать иной модели роста, чем та, которая однозначным образом связано с кумулятивностью. Согласно этому взгляду, развитие науки представляется последовательным ростом однажды познанного, подобно тому, как кирпичик к кирпичику наращивается прямая стена. По существу, такой подход признает лишь рост науки, но отвергает ее подлинное развитие: научная картина мира не изменяется, а только расширяется.

Задача классического естествознания усматривалась в нахождении неизменных законов природы, и его выдающиеся представители полагали, что эти законы ими уже найдены. Таковыми считались принципы классической механики, что отражено в очень выразительном афоризме Лагранжа: «Ньютон – счастливейший из смертных, ибо истину удается открыть лишь раз, и Ньютон открыл эту истину». Развитие физики после Ньютона трактовалось как некое редуцирование того, что было известно и того, что будет известно, к положениям классической механики. В таком учении микромир, макромир и мегамир должны подчиняться одним и тем же законам, представляя собой лишь увеличенные или уменьшенные копии друг друга. При таком подходе трудно принять, например, идею об атомах, размеры и свойства которых никак не могут быть поняты внутри классических построений. Неудивительно, что противник атомистической теории В.Оствальд считал атомную гипотезу подобной лошади, которую надо искать внутри паровоза, чтобы объяснить его движение. Атом в форме классического объекта и на самом деле очень похож на такую лошадь. Понять, что за «лошадь» спрятана внутри паровоза и есть задача неклассической науки – сначала создать модель, а потом вложить в нее принципиально новый смысл.

В неклассической науке сложилась другая установка: ведущим, обладающим эвристической ценностью и прогностической мощью элементом познавательного процесса становится теория, а факты получают свою интерпретацию лишь в контексте определенной теории. Из этого следует историческая изменчивость форм познания мира: для неклассической науки существенно не просто найти теорию, описывающую определенный круг явлений, но крайне важно найти пути перехода от этой теории к более глубокой и общей. Именно этим путем возникли и утвердились теория относительности, квантовая механика, квантовая электродинамика, именно этим путем развивается современная теория элементарных частиц и астрофизика. «Лучший удел физической теории состоит в том, чтобы указывать путь создания новой, более общей теории, в рамках которой она остается предельным случаем».

Особенность неклассической физики выявляется, быть может, наиболее рельефно в подходе к решению вопроса о соотношении субъекта и объекта. В отличие от классической науки, которая считает, что особенности субъекта никак не сказываются на результатах познания, неклассическая наука в своих методологических установках признает присутствие субъекта в процессе познания неизбежным и неустранимым, а потому результаты познания не могут не содержать «примесь субъективности». Всем известно высказывание выдающегося ученого ХХ в. Н.Бора о том, что «в драме бытия мы являемся одновременно и актерами, и зрителями». По мнению другого выдающегося физика В.Гейзенберга, квантовая теория утвердила точку зрения, согласно которой человек описывает и объясняет природу не в его, так сказать, «голой самости», а исключительно преломленную через призму человеческой субъективности. Высоко оценивая формулу К.Вейцзеккера: «Природа была до человека, но человек был до естествознания», он раскрывает ее смысл: «Первая половина высказывания оправдывает классическую физику с ее идеалами полной объективности. Вторая половина объясняет, почему мы не можем освободиться от парадоксов квантовой теории и от необходимости применения классических понятий».

Таким образом, возникнув в Новое время, наука проходит в своем развитии классический, неклассический и постнеклассический этапы, на каждом из которых разрабатываются соответствующие идеалы, нормы и методы исследования, возникает своеобразный понятийный аппарат. Но возникновение нового типа рациональности и нового образа науки не следует понимать упрощенно в том смысле, будто каждый новый этап приводит к полному исчезновению представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность. Неклассическая наука вовсе не уничтожила классическую рациональность, а только ограничила сферу его действия. При решении ряда задач неклассические представления о мире и познании оказываются избыточными, и исследователь может ориентироваться на классические образцы (например, при решении ряда задач небесной механики вовсе не требуется привлекать норы квантово-релятивистского описания).

Предполагается, что развитие науки детерминистично в отличие от непредсказуемого хода событий, присущего истории искусств. Оглядываясь назад на причудливую и подчас загадочную историю естествознания, нельзя не усомниться в правильности подобных утверждений. Имеются поистине удивительные примеры фактов, которые не принимались во внимание только потому, что культурный климат не был подготовлен к включению их в самосогласованную схему. Например, адекватная действительности гелиоцентрическая идея (от воззрений поздних пифагорейцев до ее более сильного варианта в учении Аристарха Самосского, жившего в 111 в. до н.э.) не нашла должного отклика и была отвергнута античной наукой, а геоцентрическая космология Аристотеля, получив математическое оформление в работах К.Птолемея, задала эталон научных построений и оказала громадное влияние на научную картину мира поздней античности и средневековья вплоть до ХУ1 в. В чем причины случившегося? Может их следует искать в авторитете Аристотеля? Или в большей научной разработанности геоцентрических воззрений по сравнению с гелиоцентрическими?

Лучшая разработанность геоцентрической системы мира, как и авторитете ее авторов, безусловно, сыграли немаловажную роль в утверждении геоцентрических воззрений. Однако нетрудно заметить, что, ограничившись таким объяснением, мы оставляем не снятым вопрос: почему геоцентрическая система оказалась лучше разработанной и в силу каких причин исследовательские усилия наиболее выдающихся мыслителей оказались направленными на разработку неадекватной действительности системы?

Ответ, по-видимому, следует искать в том, что любая научная теории (равно как и само научное познание, взятое во всем своем многообразии) не является самодовлеющим и самодостаточным результатом деятельности абстрактного гносеологического субъекта. Вплетенность теории в социально-историческую практику общества и через нее в общую культуру эпохи – важнейший момент ее жизнеспособности и развития. Хотя наука – относительно саморазвивающаяся система знаний, тем не менее тенденция развития научного знания в конечном счете детерминирована социальной практикой субъектов познавательной деятельности, общей динамикой их социо-культурных традиций. Поскольку в мировой науке нет абсолютно случайных и совершенно изолированных от всей человеческой культуры теорий, то возникновение или, точнее, выдвижение той или иной научной идеи и ее восприятие научным сообществом - далеко не одно и то же. Для принятия новой теории степень подготовленности исторической эпохи к ее восприятию гораздо важнее, нежели соображения, связанные с талантом ее автора или степенью ее разработанности. Считать вслед за Ф.Дайсоном, что если бы Аристарх Самосский имел больший авторитет, чем Аристотель, то гелиоцентрическая астрономия и физика избавили бы человечество от «1800-летнего мрака невежества» - значит полностью игнорировать реальный исторический контекст. Прав Э. Шредингер, который, к возмущению многих философов науки, писал: «Существует тенденция забывать, что все естественные науки связаны с общечеловеческой культурой и что научные открытия, даже кажущиеся в настоящий момент наиболее передовыми и доступными пониманию немногих избранных все же бессмысленны вне своего культурного контекста. Та теоретическая наука, которая не признает, что ее построения служат в итоге для надежного усвоения образованной прослойкой общества и превращения в органическую часть общей картины мира; теоретическая наука, повторяю, представители которой внушают друг другу идеи на языке, в лучшем случае понятном лишь малой группе близких попутчиков, - такая наука непременно оторвется от остальной человеческой культуры; в перспективе она обречена на бессилие и паралич, сколько бы ни продолжался и как бы упрямо ни поддерживался этот стиль для избранных».

Философия науки показала, что в качестве критерия научности знания должен рассматриваться целый комплекс признаков: доказательность, интерсубъективность, обезличенность, незавершенность, систематичность, критичность, внеморальность, рациональность.

1. Наука доказательна в том смысле, что ее положения не просто декларируются, не просто принимаются на веру, а выводятся, доказываются в соответствующей систематизированной и логически упорядоченной форме. Наука претендует на теоретическую обоснованность как содержания, так и способов достижения знаний, она не может твориться по заказу или указу. Реальные наблюдения, логический анализ, обобщения, выводы, установление причинно-следственной связи на основе рациональных процедур – вот доказательные средства научного знания.

2. Наука интерсубъективна в том смысле, что получаемые ею знания общезначимы, общеобязательны в отличие, например, от мнения, характеризующегося необщезначимостью, индивидуальностью. Признак интерсубъективности научного знания конкретизируется благодаря признаку его воспроизводимости, который указывает на свойство инвариантности знания, получаемого в ходе познания всяким субъектом.

3. Наука обезличенна в том смысле что ни индивидуальные особенности ученого, ни его национальность или место проживания никак не представлены в конечных результатах научного познания. Научный работник отвлекается от любых проявлений, характеризующих отношение человека к миру, он смотрит на мир как на объект исследования и не более того. Научное знание представляет тем большую ценность, чем меньше оно выражает индивидуальность исследователя.

4. Наука незавершенна в том смысле, что научное знание не может достичь абсолютной истины, после которой уже нечего будет исследовать. Абсолютная истина в качестве полного и законченного знания о мире в целом выступает как предел стремлений разума, который никогда не будет достигнут. Диалектическая закономерность познавательного движения по объекту состоит в том, что объект в процессе познания включается во все новые связи и в силу этого выступает во всех новых качествах, из объекта как бы вычерпывается все новое содержание, он как бы поворачивается каждый раз другой своей стороной, в нем выявляются все новые свойства. Задача познания – постигнуть реальное содержание объекта познания, а это означает необходимость отразить все многообразие свойств, связей, опосредований данного объекта, которые по существу бесконечны. В силу этого и процесс научного познания бесконечен.

5. Наука систематична в том смысле, что она имеет определенную структуру, а не является бессвязным набором частей. Собрание разрозненных знаний, не объединенных в связную систему, еще не образует науку. В основе научных знаний лежат определенные исходные положения, закономерности позволяющие объединять соответствующие знания в единую систему. Знания превращаются в научные, когда целенаправленное собирание фактов, их описание и объяснение доводится до уровня их включения в систему понятий, в состав теории.

6. Наука критична в том смысле, что ее фундаментом является свободомыслие и поэтому она всегда готова поставить под сомнение и пересмотреть свои даже самые основополагающие результаты.

7. Наука ценностно нейтральна в том смысле, что научные истины нейтральны в морально-этическом плане, а нравственные оценки могут относиться либо к деятельности по получению знания, либо к деятельности по его применению. «Принципы науки могут быть высказаны только в изъявительном наклонении, в этом же наклонении выражаются и экспериментальные данные. Исследователь может сколько угодно жонглировать с этими принципами, соединять их, нагромождать их друг на друга; все, что он из них получит, будет в изъявительном наклонении. Он никогда не получит предложения, которое говорило: делай это или не делай того, т.е. предложения, которое бы соответствовало или противоречило морали».

Только одновременное наличие всех указанных признаков в известном результате познания в полной мере определяет его научность. Отсутствие хотя бы одного из этих признаков делает невозможным квалифицировать этот результат как научный. Например, интерсубъективным может быть и «всеобщее заблуждение», систематичной может быть и религия, истинность могут включать и преднаука, обыденные знания, мнения.

Арендный блок

ОГБОУ СПО «Ивановский энергетический колледж»

«Основные этапы развития науки»

Выполнил

Иваново 2015

Введение:

Две с половиной тысячи лет истории науки не оставляют сомнения в том, что она развивается, т.е. необратимо качественно изменяется со временем. Наука постоянно наращивает свой объем, непрерывно разветвляется, усложняется и т.п. Развитие это оказывается неравномерным: с «рваным» ритмом, причудливым переплетением медленного кропотливого накопления новых знаний с «обвальным» эффектом внедрения в тело науки «сумасшедших идей», за непостижимо короткое время опрокидывающих складывавшиеся веками картины мира. Фактическая история науки внешне выглядит достаточно дробно и хаотично. Но наука изменила бы самой себе, если бы в этом «броуновском движении» гипотез, открытий, теорий не попыталась бы отыскать некую упорядоченность, закономерный ход становления и смены идей и концепций, т.е. обнаружить скрытую логику развития научного знания.

Выявление логики развития науки означает уяснение закономерностей научного прогресса, его движущих сил, причин и исторической обусловленности. Современное видение этой проблемы существенно отличается от того, что господствовало, пожалуй, до середины нашего столетия. Прежде полагали, что в науке идет непрерывное приращение научного знания, постоянное накопление новых научных открытий и все более точных теорий, создающее в итоге кумулятивный эффект на разных направлениях познания природы. Ныне логика развития науки представляется иной: последняя развивается не непрерывным накоплением новых фактов и идей, не шаг за шагом, а через фундаментальные теоретические сдвиги, в один прекрасный момент перекраивающие дотоле привычную общую картину мира и заставляющие ученых перестраивать свою деятельность на базе принципиально иных мировоззренческих установок. Пошаговую логику неспешной эволюции науки сменила логика научных революций и катастроф. Ввиду новизны и сложности проблемы в методологии науки еще не сложилось общепризнанного подхода или модели логики развития научного знания. Таких моделей множество. Но некоторые все же выбились в явные лидеры.

Данная тема в настоящее время весьма актуальна, так как наука пронизывает всю нашу жизнь, проникает во все сферы.

Целью работы является изучение философского понимания науки и стадий её исторического развития. Задачи исследования можно сформулировать в соответствии с целью – изучить научные материалы, относящиеся к данной тематике.

  1. Введение.
  2. История науки.
    1. Философия науки.
    2. Основные этапы развития науки.
    1. Научные организации.
    2. Научная картина мира.
    3. Псевдонаука.
  3. Заключение.
  4. Список использованных источников.
  5. История науки.

История науки — это исследование феномена науки в его истории. Наука, в частности, представляет собой совокупность эмпирических, теоретических и практических знаний о Мире, полученных научным сообществом. Поскольку с одной стороны наука представляет объективное знание, а с другой — процесс его получения и использования людьми, добросовестная историография науки должна принимать во внимание не только историю мысли, но и историю развития общества в целом.

Изучение истории современной науки опирается на множество сохранившихся оригинальных или переизданных текстов. Однако сами слова «наука» и «ученый» вошли в употребление лишь в XVIII—XX веках, а до этого естествоиспытатели называли свое занятие «натуральной философией».

Хотя эмпирические исследования известны еще с античных времен (например, работы Аристотеля и Теофраста), а научный метод был в своих основах разработан в Средние века (например, у Ибнал-Хайсама, Аль-Бируни или Роджера Бэкона), начало современной науки восходит к Новому времени, периоду, называемому научной революцией, произошедшей в XVI—XVII веках в Западной Европе.

Научный метод считается столь существенным для современной науки, что многие ученые и философы считают работы, сделанные до научной революции, «преднаучными». Поэтому историки науки нередко дают науке более широкое определение, чем принято в наше время, чтобы включать в свои исследования период Античности и Средневековья.

Первой и главной причиной возникновения науки является формирование субъектно-объектных отношений между человеком и природой, между человеком и окружающей его средой. Это связано, в первую очередь, с переходом человечества от собирательства к производящему хозяйству. Так, уже в эпоху Палеолита человек создаёт первые орудия труда из камня и кости — топор, нож, скребло, копьё, лук, стрелы, овладевает огнём и строит примитивные жилища. В эпоху Мезолита человек плетёт сеть, делает лодку, занимается обработкой дерева, изобретает лучковое сверло. В период Неолита (до 3000 г. до н. э.) человек развивает гончарное ремесло, осваивает земледелие, занимается изготовлением глиняной посуды, использует мотыгу, серп, веретено, глиняные, бревенчатые, свайные постройки, овладевает металлами. Использует животных в качестве тягловой силы, изобретает колёсные повозки, гончарное колесо, парусник, меха. К началу первого тысячелетия до нашей эры появляются орудия труда из железа.

Второй причиной формирования науки является усложнение познавательной деятельности человека. «Познавательная», поисковая активность характерна и для животных, но в силу усложнения предметно-практической деятельности человека, освоения человеком различных видов преобразующей деятельности, происходят глубокие изменения в структуре психики человека, строении его мозга, наблюдаются изменения в морфологии его тела.

Развитие науки было составной частью общего процесса интеллектуального развития человеческого разума и становления человеческой цивилизации. Нельзя рассматривать развитие науки в отрыве от следующих процессов:

Формирование речи;

Развитие счёта;

Возникновение искусства;

Формирование письменности;

Формирование мировоззрения (миф);

Возникновение философии.

Периодизация науки.

К одной из первоочередных проблем истории науки относят проблему периодизации. Обычно выделяют следующие периоды развития науки:

Преднаука — зарождение науки в цивилизациях Древнего Востока: астрологии, доевклидова геометрия, грамоты, нумерологии.

Античная наука — формирование первых научных теорий (атомизм) и составление первых научных трактатов в эпоху Античности: астрономия Птолемея, ботаника Теофраста, геометрия Евклида, физика Аристотеля, а также появление первых протонаучных сообществ в лице Академии

Средневековая магическая наука — формирование экспериментальной науки на примере алхимии Джабира

Научная революция и классическая наука — формирование науки в современном смысле в трудах Галилея, Ньютона, Линнея

Неклассическая наука — наука эпохи кризиса классической рациональности: теория эволюции Дарвина, теория относительности Эйнштейна, принцип неопределенности Гейзенберга, гипотеза Большого Взрыва, теория катастроф Рене Тома, фрактальная геометрия Мандельброта.

Возможно другое деление на периоды:

доклассический (ранняя античность, поиск абсолютной истины, наблюдение и размышление, метод аналогий)

классический (XVI—XVII вв., появляется планирование экспериментов, введён принцип детерминизма, повышается значимость науки)

неклассический (конец XIX в, появление мощных научных теорий, например, теории относительности, поиск относительной истины, становится ясно, что принцип детерминизма не всегда применим, а экспериментатор оказывает влияние на поиск эксперимента)

постнеклассический (конец XX в., появляется синергетика, расширяется предметное поле познания, наука выходит за свои рамки и проникает в другие области, поиск целей науки).

Предыстория современной науки:

Накопление знаний происходит с появлением цивилизаций и письменности; известны достижения древних цивилизаций (египетской, месопотамской и т. д.) в области астрономии, математики, медицины и др. Однако в условиях господства мифологического, дорационального сознания эти успехи не выходили за чисто эмпирические и практические рамки. Так, например, Египет славился своими геометрами; но если взять египетский учебник геометрии, то там можно увидеть лишь набор практических рекомендаций для землемера, изложенных догматически («если хочешь получить то-то, делай так-то и так-то»); понятие же теоремы, аксиомы и особенно доказательства было этой системе абсолютно чуждо. Действительно, требование «доказательств» показалось бы почти кощунством в условиях, предполагавших авторитарную передачу знания от учителя к ученику.

Можно считать, что истинный фундамент классической науки был заложен в Древней Греции, начиная примерно с VI в. до н. э., когда на смену мифологическому мышлению впервые пришло мышление рационалистическое. Эмпирия, во многом заимствованная греками у египтян и вавилонян, дополняется научной методологией: устанавливаются правила логичных рассуждений, вводится понятие гипотезы и т. д., появляется целый ряд гениальных прозрений, как например теория атомизма. Особенно важную роль в разработке и систематизации, как методов, так и самих знаний сыграл Аристотель. Отличие античной науки от современной состояло в её умозрительном характере: понятие эксперимента было ей чуждо, учёные не стремились соединять науку с практикой (за редкими исключениями, например, Архимеда), а наоборот гордились причастностью к чистому, «бескорыстному» умозрению. Отчасти, это объясняется тем, что греческая философия предполагала,[источник не указан 582 дня] что история циклично повторяется, и развитие науки бессмысленно, так как оно неизбежно закончится кризисом этой науки.

Распространившееся в Европе христианство упразднило взгляд на историю, как на повторяющиеся периоды (Христос, как историческая личность, явился на земле только единственный раз) и создало высокоразвитую богословскую науку (родившуюся в ожесточённых богословских спорах с еретиками в эпоху Вселенских Соборов), построенную на правилах логики. Однако, после разделения церквей в 1054 году, в западной (католической) части обострился кризис богословия. Тогда интерес к эмпирике (опыту) был совершенно отброшен, а наука стала сводиться к толкованию авторитетных текстов и развитию формально-логических методов в лице схоластики. Однако труды античных учёных, получивших статус «авторитетов» — Евклида в геометрии, Птолемея в астрономии, его же и Плиния Старшего в географии и естественных науках, Доната в грамматике, Гиппократа и Галена в медицине и, наконец, Аристотеля, как универсального авторитета в большинстве областей знаний — донесли основы античной науки до Нового Времени, послужив реальным фундаментом, на котором было заложено всё здание современной науки.

В эпоху Возрождения происходит поворот к эмпирическому и свободному от догматизма рационалистическому исследованию, во многом сравнимый с переворотом VI в. до н. э. Этому способствовало изобретение книгопечатания (середина 15-го века), резко расширившего базу для будущей науки. Прежде всего, происходит становление гуманитарных наук, или studia humana (как называли их в противоположность богословию — studia divina); в середине XV в. Лоренцо Валла издаёт трактат «О подложности Константинова дара», заложив тем самым основы научной критики текстов, сто лет спустя Скалигер закладывает основы научной хронологии.

Параллельно идёт стремительное накопление новых эмпирических знаний (особенно с открытием Америки и началом эпохи Великих географических открытий), подрывающее картину мира, завещанную классической традицией. Жестокий удар по ней наносит и теория Коперника. Возрождается интерес к биологии и химии.

Зарождение современной науки

Анатомические исследования Везалия возродили интерес к строению тела человека.

Современное экспериментальное естествознание зарождается только в конце XVI века. Его появление было подготовлено протестантской Реформацией и католической Контрреформацией, когда под вопрос были поставлены самые основы средневекового мировоззрения. Так же как Лютер и Кальвин преобразовали религиозные доктрины, работы Коперника и Галилея привели к отказу от астрономии Птолемея, а труды Везалия и его последователей внесли существенные поправки в медицину. Эти события положили начало процессу, ныне называемому научной революцией.

Ньютон, Исаак

Теоретическое обоснование новой научной методики принадлежит Фрэнсису Бэкону, обосновавшему в своём «Новом органоне» переход от традиционного дедуктивного подхода (от общего — умозрительного предположения или авторитетного суждения — к частному, то есть к факту) к подходу индуктивному (от частного — эмпирического факта — к общему, то есть к закономерности). Появление систем Декарта и особенно Ньютона — последняя была целиком построена на экспериментальном знании — знаменовали окончательный разрыв «пуповины», которая связывала нарождающуюся науку Нового времени с антично-средневековой традицией. Опубликование в 1687 г. «Математических начал натуральной философии» стало кульминацией научной революции и породило в Западной Европе беспрецедентный всплеск интереса к научным публикациям. Среди других деятелей науки этого периода выдающийся вклад в научную революцию внесли также Браге, Кеплер, Галлей, Браун, Гоббс, Гарвей, Бойль, Гук, Гюйгенс, Лейбниц, Паскаль.

Философия науки.

Философия науки — раздел философии, изучающий понятие, границы и методологию науки. Также существуют более специальные разделы философии науки, например философия математики, философия физики, философия химии, философия биологии.

Философия науки как направление западной и отечественной философии представлена множеством оригинальных концепций, предлагающих ту или иную модель развития науки и эпистемологии. Она сосредоточена на выявлении роли и значимости науки, характеристик когнитивной, теоретической деятельности.

Философия науки как философская дисциплина, наряду с философией истории, логикой, методологией, культурологией, исследующей свой срез рефлексивного отношения мышления к бытию (в данном случае к бытию науки), возникла в ответ на потребность осмыслить социокультурные функции науки в условиях НТР. Это молодая дисциплина, которая заявила о себе лишь во второй половине XX в. В то время как направление, имеющее название «философия науки», возникло столетием раньше.

«Предметом философии науки, — как отмечают исследователи, — являются общие закономерности и тенденции научного познания как особой деятельности по производству научных знаний, взятых в их историческом развитии и рассматриваемых в исторически изменяющемся социокультурном контексте».

Философия науки имеет статус исторического социокультурного знания независимо от того, ориентирована она на изучение естествознания или социально-гуманитарных наук. Философа науки интересует научный поиск, «алгоритм открытия», динамика развития научного знания, методы исследовательской деятельности. (Следует отметить, что философия науки хотя и интересуется разумным развитием наук, но всё же не призвана непосредственно обеспечивать их разумное развитие, как это призвана многоотраслевая метанаука.) Если основная цель науки — получение истины, то философия науки является одной из важнейших для человечества областей применения его интеллекта, в рамках которой ведется обсуждение вопроса «как возможно достижение истины?».

Основные направления философии науки

Непосредственной предшественницей философии науки является гносеология XVII—XVIII вв. (как эмпирическая, так и рационалистическая), в центре которой было осмысление сущности научного знания и методов его получения. Гносеологические вопросы были центральной темой классического этапа философии Нового времени — от Р. Декарта и Дж. Локка до И. Канта. Без понимания этих вопросов нельзя понять философию науки XIX—XX вв.

Как отдельное направление философии, философия науки оформилась в XIX в. В её развитии можно выделить несколько этапов.

Позитивизм:

Позитивизм проходит ряд стадий, традиционно называемых первым позитивизмом, вторым позитивизмом (эмпириокритицизмом) и третьим позитивизмом (логический позитивизм, неопозитивизм). Общей чертой всех перечисленных течений является эмпиризм, восходящий к Ф. Бэкону, и неприятие метафизики, под которой позитивисты понимают классическую философию Нового времени — от Декарта до Гегеля. Также для позитивизма в целом характерен односторонний анализ науки: считается, что наука оказывает существенное влияние на культуру человечества, в то время как сама она подчиняется лишь своим внутренним законам и не подвержена влиянию социальных, исторических, эстетических, религиозных и прочих внешних факторов.

Основные черты позитивизма:

наука и научная рациональность признается высшей ценностью;

требование перенесения естественнонаучных методов в гуманитарные науки;

попытка избавить науку от умозрительных построений, требование все проверять опытом;

вера в прогресс науки.

Критика позитивизма:

1. Мир рассматривается как механический агрегат частных областей, где сумма частностей дает целое.

2. Мир не содержит никаких целостных, всеобщих свойств и законов.

3. Отрицание философии, которое ведет к отрицанию партийности философии, что влечет за собой впадение в наихудшую философию.

4. Последняя реальность — ощущения, что свидетельствует о заимствовании логики субъективного идеализма (лежит ли что-нибудь за ощущениями проверить нельзя).

1.2. Основные этапы развития науки.

В ранних человеческих обществах познавательные и производственные моменты были неразделимы, первоначальные знания носили практический характер, выполняя роль как бы руководства определенными видами деятельности человека. Накопление таких знаний составило важную предпосылку будущей науки.

Для возникновения собственно науки нужны были соответствующие условия: определенный уровень развития производства и общественных отношений, разделение умственного и физического труда и наличие широких культурных традиций, обеспечивающих восприятие достижений других народов и культур.

Соответствующие условия раньше всего сложились в Древней Греции, где первые теоретические системы возникли в VI в. до н.э. Такие мыслители, как Фалес и Демокрит, уже объясняли действительность через естественные начала в противовес мифологии, Древнегреческий ученый Аристотель первым описал закономерности природы, общества и мышления, выдвигая на передний план объективность знания, логичность, убедительность. В момент познания была введена система абстрактных понятий, закладывались основы доказательного способа изложения материала; начали обособляться отдельные отрасли знания: геометрия (Евклид), механика (Архимед), астрономия (Птолемей).

Ряд областей знания был обогащен в эпоху средневековья учеными Арабского Востока и Средней Азии: Ибн Ста, или Авиценна, (980—1037), Ибн Рушд (1126—1198), Бируни (973—1050). В Западной Европе из-за господства религии родилась специфическая философская наука — схоластика, а также получили развитие алхимия и астрология. Алхимия способствовала созданию базы для науки в современном смысле слова, поскольку опиралась на опытное изучение природных веществ и соединений и подготовила почву для становления химии. Астрология связана была с наблюдением за небесными светилами, что также развивало опытную базу для будущей астрономии.

Важнейшим этапом развития науки стало Новое время — XVI—XVII вв. Здесь определяющую роль сыграли потребности нарождавшегося капитализма. В этот период было подорвано господство религиозного мышления, и в качестве ведущего метода исследовании утвердился эксперимент (опыт), который наряду с наблюдением радикально расширил сферу познаваемой реальности. В это время теоретические рассуждения стали соединяться с практическим освоением природы, что резко усилило познавательные возможности науки Это глубокое преобразование науки, произошедшее в XVI—XVII вв., считают первой научной революцией, давшей миру такие имена, как Г.Галшей (1564—1642), (1571—1630), У.Гарвей (1578—1657), Р.Декарт (1596—1650), Х.Гюйгенс (1629—1695), И.Ньютон (1643—1727) и др.

Научная революция XVII в., связана с революцией в естествознании. Развитие производительных сил требовало создания новых машин, внедрения химических процессов, законов механики, конструирования точных приборов для астрономических наблюдений.

Научная революция прошла несколько этапов, и ее становление заняло полтора столетия. Ее начало положено Н.Коперником и его последователями Бруно, Галилеем, Кеплером. В 1543 г. польский ученый Н.Коперник (1473—1543) опубликовал книгу «Об обращениях небесных сфер», в которой утвердил представление о том, что Земля так же, как и другие планеты Солнечной системы, обращается вокруг Солнца, являющегося центральным телом Солнечной системы. Коперник установил, что Земля не является исключительным небесным телом, чем был нанесен удар по антропоцентризм и религиозным легендам, в соответствии с которыми Земля якобы занимает центральное положение во Вселенной. Была отвергнута геоцентрическая система Птолемея.

Галилею принадлежат крупнейшие достижения в области физики и разработки самой фундаментальной проблемы — движения, огромны его достижения в астрономии: обоснование и утверждение гелиоцентрической системы, открытие четырех самых крупных спутников Юпитера из 13 известных в настоящее время; открытие фаз Венеры, необычайного вида планеты Сатурн, создаваемого, как известно теперь, кольцами, представляющими совокупность твердых тел; огромного количества звезд, не видимых невооруженным взглядом. Галилей добился успеха в научных достижениях в значительной мере потому, что в качестве исходного пункта познания природы признавал наблюдения, опыт.

Современный мир характеризуется как период бурного развития научно-технических аспектов жизнедеятельности человека, которые естественно находят свое применение в экономической сфере, снижая физическую нагрузку на человека. Однако очевидные преимущества использования научно-технических достижений имеют и обратную сторону, которая в курсе культурологии фиксируется как проблема социокультурных последствий научно-технической революции.

Ньютон создал основы механики, открыл закон всемирного тяготения и разработал на его основе теорию движения небесных тел. Это научное открытие прославило Ньютона навечно. Ему принадлежат такие достижения в области, механики, как введение понятий силы, инерции, формулировка трех законов механики; в области оптики — открытие рефракции, дисперсии, интерференции, дифракции света; в области математики — алгебра, геометрия, интерполяция, дифференциальное и интегральное исчисление.

В XVIII веке революционные открытия были совершены в астрономии И.Кантом (172-4—1804) и П. Лапласом (1749—1827), а также в химии — ее начало связано с именем АЛ.Лавуазье (1743—1794). К этому периоду относится деятельность М.В. Ломоносова (1711—1765), предвосхитившего многое из последующего развития естествознания.

В XIX веке в науке происходили непрерывные революционные перевороты во всех отраслях естествознания.

Опора науки Нового времени на эксперимент, развитие механики заложили фундамент для установления связи науки с производством. В то же время к началу XIX в. накопленный наукой опыт, материал в отдельных областях уже не укладывался в рамки механистического объяснения природы и общества. Потребовался новый виток научных знаний и более глубокий и широкий синтез, объединяющий результаты отдельных наук. В этот исторический период науку прославили Ю.Р. Майер (1814—1878), Дж. Джоулъ (1818—1889), Г. Гелъмголъц (1821—1894), открывшие законы сохранения и превращения энергии, что обеспечило единую основу для всех разделов физики и химии. Огромное значение в познании мира имело создание Т.Шванном (1810—1882) и М. Шлейденом (1804—1881) клеточной теории, показавшей единообразную структуру всех живых организмов. Ч. Дарвин (1809—1882), создавший эволюционное учение в биологии, внедрил идею развития в естествознание. Благодаря периодической системе элементов, открытой гениальным русским ученым Д.И. Менделеевым (1834—1907), была доказана внутренняя связь между всеми известными видами вещества.

Таким образом, к рубежу XIX—XX вв. произошли крупные изменения в основах научного мышления, механистическое мировоззрение исчерпало себя, что привело классическую науку Нового времени к кризису. Этому способствовали помимо названных выше, открытие электрона и радиоактивности. В результате разрешения кризиса произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки, Она связана прежде всего с именами М. Планка (1858—1947) и А.Эйнштейна (1879—1955), Открытие электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали прорыв в область микромира и больших скоростей. Успехи физики оказали влияние на химию. Квантовая теория, объяснив природу химических связей, открыла перед наукой и производством широкие возможности химического преобразования вещества; началось проникновение в механизм наследственности, получила развитие генетика, сформировалась хромосомная теория.

К середине XX века на одно из первых мест в естествознании выдвинулась биология, где совершены такие фундаментальные открытия, как установление молекулярной структуры ДНК Ф. Криком (род. 1916) и Дж. Уотсоном (род. 1928), открытие генетического кода.

Наука в настоящее время — это чрезвычайно сложное общественное явление, имеющее многосторонние связи с миром. Ее рассматривают с четырех сторон (как и любое другое общественное явление — политику, мораль, право, искусство, религию):

1) с теоретической, где наука — система знаний, форма общественного сознания;

2) с точки зрения общественного разделения труда, где наука — форма деятельности, системой отношений между учеными и научными учреждениями;

3) с точки зрения социального института;

4) с точки зрения практического применения выводов науки со стороны ее общественной роли.

В настоящее время научные дисциплины принято подразделять на три большие группы: естественные, общественные и технические. Отрасли науки различаются по своим предметам и методам. В то же время резкой грани между ними нет и ряд научных дисциплин занимает промежуточное междисциплинарное положение, например, биотехнология, радиогеология.

Науки подразделяют на фундаментальные и прикладные. Фундаментальные науки познанием законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы изучаются в «чистом виде», поэтому фундаментальные науки иногда называют чистыми науками.

Цель прикладных наук — применение результатов фундаментальных наук для решения не только познавательных, но и социально-практических проблем.

Создание теоретического задела для прикладных наук обусловливает, как правило, опережающее развитие фундаментальных наук по сравнению с прикладными. В современном обществе, в развитых индустриальных странах ведущее место принадлежит именно теоретическому, фундаментальному знанию, и роль его все время повышается. В цикле «фундаментальные исследования — разработки — внедрение» — установка на сокращение сроков движения.

Роль науки в современном обществе.

20 век стал веком победившей научной революции. НТП ускорился во всех развитых странах. Постепенно происходило все большее повышение наукоемкости продукции. Технологии меняли способы производства. К середине 20 века фабричный способ производства стал доминирующим. Во второй половине 20 века большое распространение получила автоматизация. К концу 20 века развились высокие технологии, продолжился переход к информационной экономике. Все это произошло благодаря развитию науки и техники. Это имело несколько следствий. Во-первых, увеличились требования к работникам. От них стали требоваться большие знания, а также понимание новых технологических процессов. Во-вторых, увеличилась доля работников умственного труда, научных работников, то есть людей, работа которых требует глубоких научных знаний. В-третьих, вызванный НТП рост благосостояния и решение многих насущных проблем общества породили веру широких масс в способность науки решать проблемы человечества и повышать качество жизни. Эта новая вера нашла свое отражение во многих областях культуры и общественной мысли. Такие достижения как освоение космоса, создание атомной энергетики, первые успехи в области робототехники породили веру в неизбежность научно-технического и общественного прогресса, вызвали надежду скорого решения и таких проблем как голод, болезни и т. д.

И на сегодняшний день мы можем сказать, что наука в современном обществе играет важную роль во многих отраслях и сферах жизни людей. Несомненно, уровень развитости науки может служить одним из основных показателей развития общества, а также это, несомненно, показатель экономического, культурного, цивилизованного, образованного, современного развития государства.

Очень важны функции науки как социальной силы в решении глобальных проблем современности. В качестве примера здесь можно назвать экологическую проблематику. Как известно, бурный научно-технический прогресс составляет одну из главных причин таких опасных для общества и человека явлений, как истощение природных ресурсов планеты, загрязнение воздуха, воды, почвы. Следовательно, наука – один из факторов тех радикальных и далеко не безобидных изменений, которые происходят сегодня в среде обитания человека. Этого не скрывают и сами учёные. Научным данным отводится ведущая роль и в определении масштабов и параметров экологических опасностей.

Возрастающая роль науки в общественной жизни породила её особый статус в современной культуре и новые черты её взаимодействия с различными слоями общественного сознания. В этой связи остро ставится проблема особенностей научного познания и его соотношения с другими формами познавательной деятельности (искусством, обыденным сознанием и т. д.).

Эта проблема, будучи философской, по своему характеру, в то же время имеет большую практическую значимость. Осмысление специфики науки является необходимой предпосылкой внедрения научных методов в управление культурными процессами. Оно необходимо и для построения теории управления самой наукой в условиях НТР, поскольку выяснение закономерностей научного познания требует анализа его социальной обусловленности и его взаимодействия с различными феноменами духовной и материальной культуры.

В качестве главных же критериев выделения функций науки надо взять основные виды деятельности ученых, их круг обязанностей и задач, а также сферы приложения и потребления научного знания. Ниже перечислены одни из главных функций:

1) познавательная функция задана самой сутью науки, главное назначение которой - как раз познание природы, общества и человека, рационально-теоретическое постижение мира, открытие его законов и закономерностей, объяснение самых различных явлений и процессов, осуществление прогностической деятельности, то есть производство нового научного знания;

2) мировоззренческая функция, безусловно, тесно связана с первой, главная цель ее - разработка научного мировоззрения и научной картины мира, исследование рационалистических аспектов отношения человека к миру, обоснование научного миропонимания: ученые призваны разрабатывать мировоззренческие универсалии и ценностные ориентации, хотя, конечно, ведущую роль в этом деле играет философия;

3) производственная, технико-технологическая функция призвана для внедрения в производство нововведений инноваций, новых технологий, форм организации и др. Исследователи говорят и пишут о превращении науки в непосредственную производительную силу общества, о науке как особом "цехе" производства, отнесении ученых к производительным работникам, а все это как раз и характеризует данную функцию науки;

4) культурная, образовательная функция заключается главным образом в том, что наука является феноменом культуры, заметным фактором культурного развития людей и образования. Ей достижения идеи и рекомендации заметно воздействуют на весь учебно-воспитательный процесс, на содержание программ планов, учебников, на технологию, формы и методы обучения. Безусловно, ведущая роль здесь принадлежит педагогической науке. Данная функция науки осуществляется через культурную деятельность и политику, систему образования и средств массовой информации, просветительскую деятельность ученых и др. Не забудем и того, что наука является культурным феноменом, самым имеет соответствующую направленность, занимает исключительно важное место в сфере духовного производства.

2.1. Научные организации.

В научном сообществе существует довольно большое количество научных организаций. Активную роль в развитии науки играют добровольные научные общества, основной задачей которых является обмен научной информацией, в том числе, в ходе проводимых конференций, и благодаря публикациям в периодических изданиях, выпускаемых обществом. Членство в научных обществах является добровольным, часто свободным и может требовать членских взносов. Государство может оказывать этим обществам различную поддержку, а общество может высказывать согласованную позицию властям. В некоторых случаях деятельность добровольных обществ охватывает и более широкие вопросы, например, стандартизации. Одним из наиболее авторитетных и массовых обществ является IEEE. Международные научные союзы допускают как коллективное, так индивидуальное членство. Национальные академии наук в некоторых странах Европы исторически выросли из национальных научных обществ. В Великобритании, например, роль Академии играет Королевское научное общество.

Первые научные общества появились в Италии в 1560-х годах — это были «Академия тайн природы» (Academia secretorum naturae) в Неаполе (1560), «Академия Линчеев» (Accademia dei Lincei — дословно, «академия рысьеглазых», то есть обладающих особой зоркостью) в Риме (1603), «Академия опытных знаний» («Академии опытов», 1657) во Флоренции. Все эти итальянские академии, в которых участвовало немало значительных мыслителей и общественных деятелей во главе с приглашённым почётным членом Галилео Галилеем, были созданы с целью пропаганды и расширения научных знаний в области физики на основе регулярных встреч, обмена идеями и проведения экспериментов. Бесспорно, они повлияли на развитие европейской науки в целом.

Необходимость ускоренного развития науки и техники потребовала от государства более активного участия в развитии науки. Соответственно, в ряде стран, например, в России, Академии созданы по указу сверху. Однако в большинстве Академий наук приняты демократические уставы, обеспечивающие им относительную независимость от государства

  1. Популяризация науки

Популяризация науки — процесс распространения научных знаний в современной и доступной форме для широкого круга людей (имеющих определенный уровень подготовленности для получения информации).

Популяризация науки, «перевод» специализированных знаний на язык малоподготовленного слушателя, читателя — одна из самых важных задач, стоящих перед популяризаторами науки. Задачей популяризатора науки является превращение скучных научных данных в интересную и понятную большинству информацию. Популяризация науки может быть направлена как на общество в целом, так и на его часть, например, подрастающее поколение. Важную роль в этом процессе играет научная фантастика, предвосхитившая и вдохновившая множество научных открытий. Существенный вклад в это внёс фантаст Жюль Верн, один из первопроходцев жанра. Приход молодёжи в науку и высокотехнологичные области производства, внимание непосвящённой части общества к научным проблемам зависят от степени популярности науки. Учёные, как носители научных знаний, заинтересованы в их сохранении, развитии и приумножении, чему способствует приток в неё молодёжи. Популяризация науки увеличивает количество людей интересующихся наукой благодаря стимуляции интереса к ней.

Как синонимы популяризации науки используются такие выражения как: занимательная наука (термин был придуман Яковом Перельманом), популярная наука, поп-наука (синоним клише «популярная наука»). Проведенный Институтом психологии РАН опрос, в котором учёных спрашивали о том, знают ли они о существовании поп-науки, и о отношении к ней, показал, что большая часть учёных воспринимают поп-науку не только как популярную науку, но и как:

«примитивизации науки для толпы», «превращения науки в зрелище в худшем смысле этого слова», «профанации науки», «вульгаризированного до извращения толкования научных достижений», «доведения науки до уровня комиксов» и др.

Тихо Браге считал, что научные знания должны быть доступны только правителям, умеющим ими пользоваться. Академик РАН Людвиг Фаддеев так высказался о популяризации науки:

«Мы отдаем себе отчёт, что должны все-таки объяснять людям, налогоплательщикам, что мы делаем. Но нужно популяризировать те области науки, которые уже полностью понятны. Современную науку труднее популяризировать. Рассказывать про всякие кварки, струны, поля Янга-Миллса… получается нехорошо — с обманами»

  1. Псевдо наука.

Псевдонау́ка (от греч. ψευδής — «ложный» + наука; синоним — лженау́ка, близкие по значению термины: паранау́ка, квазинау́ка, альтернативная наука, неакадемическая наука) — деятельность или учение, осознанно или неосознанно имитирующие науку, но по сути таковыми не являющиеся.

Другое распространённое определение псевдонауки — «мнимая или ложная наука; совокупность убеждений о мире, ошибочно рассматриваемая как основанная на научном методе или как имеющая статус современных научных истин»

Наука и псевдонаука

Главное отличие псевдонауки от науки — это некритичное использование новых непроверенных методов, сомнительных и зачастую ошибочных данных и сведений, а также отрицание возможности опровержения, тогда как наука основана на фактах (проверенных сведениях), верифицируемых методах и постоянно развивается, расставаясь с опровергнутыми теориями и предлагая новые. Виталий Гинзбург, Нобелевский лауреат по физике 2003 года: «Лженаука — это всякие построения, научные гипотезы и так далее, которые противоречат твёрдо установленным научным фактам. Я могу это проиллюстрировать на примере. Вот, например, природа теплоты. Мы сейчас знаем, что теплота — это мера хаотического движения молекул. Но это когда-то не было известно. И были другие теории, в том числе теория теплорода, состоящая в том, что есть какая-то жидкость, которая переливается и переносит тепло. И тогда это не было лженаукой, вот что я хочу подчеркнуть. Но если сейчас к вам придёт человек с теорией теплорода, то это невежда или жулик. Лженаука — это то, что заведомо неверно».

По определению доктора философских наук В. Кувакина: «Лженаука — это такая теоретическая конструкция, содержание которой, как удаётся установить в ходе независимой научной экспертизы, не соответствует ни нормам научного знания, ни какой-либо области действительности, а её предмет либо не существует в принципе, либо существенно сфальсифицирован».

Одной из возможных причин выставления вердикта в псевдонаучности (лженаучности), является не всегда осознанное использование научной методологии к объяснению реальных фактов и наблюдаемых явлений, которые принципиально не могут быть объектом научного изучения. Так академик Л. Мандельштам, имея в виду научное исследование, говорил: «…Вообще я считаю, что явления принципиально не повторяемые, происходящие принципиально только один раз, не могут быть объектом изучения». При этом он упоминал мнение английского математика и философа Уайхтеда, считавшего, что рождение теоретической физики связано именно с применением к различным вопросам представления о периодичности.

Заключение.

В своей курсовой работе я рассмотрела такую важную в философии тему, как «Наука и её роль в современном обществе». Раскрывая тему, я показала, что наука была актуальна в древние времена, она актуальна и на сегодняшний день. И несомненно, наука будет актуальна и в будущем.

Говорят, что если бы не было Баха, то мир никогда бы не услышал музыки. Но если бы не родился Эйнштейн, то теория относительности рано или поздно была бы открыта каким-нибудь ученым.

Знаменитый афоризм Ф. Бэкона: «Знание – сила» сегодня актуален как никогда. Тем более, если в обозримом будущем человечество будет жить в условиях так называемого информационного общества, где главным фактором общественного развития станет производство и использование знания, научно-технической и другой информации. Возрастание роли знания (а в ещё большей мере – методов её получения) в жизни общества неизбежно должно сопровождаться усилением знания наук, специально анализирующих знание, познание и методы исследования.

Наука есть постижение мира, в котором мы живем. Соответственно науку принято определять как высокоорганизованную и высокоспециализированную деятельность по производству объективных знаний о мире, включающем и самого человека.

Реферат. История науки. Философия науки. Основные этапы развития науки. Роль науки в современном обществе. Целью работы является изучение философского понимания науки и стадий её исторического развития. Научная картина мира. Задачи исследования можно сформулировать в соответствии с целью – изучить научные материалы, относящиеся к данной тематике.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы